

Securing Docker Deployments

Paris Zoumpouloglou
zubu.re
@pzubu

 Advancements, Considerations and
Best Practices

Docker in 60 seconds

● Initial release March 2013

● Developed in Go

● Complete software ecosystem around Linux containers.

● Less overhead, isolation (?), better resource management

Docker in 60 seconds

● Linux kernel resource isolation capabilities

– Cgroups – Resource Management (CPU, Memory, net)

– Namespaces – Process Isolation

– Shared kernel for host and containers
● Software distribution using Docker Images (Docker Hub)

● Many similarities with Git workflow

docker pull <image name>

docker commit <container>

...

https://hub.docker.com/

Docker in 60 seconds

● Backed by major industry players
(Amazon, Microsoft, IBM etc.)

● Era of CI/CD

● The eternal Linux “works on my
machine” struggle

● Hype! Hype! Hype!

Docker Attack Surfaces

● Docker Daemon
– One service to rule them all

● Containers
– Containers do not (always) contain!

● Image Distribution
– Public Docker Images anyone?

First things first

$ curl ­fsSL https://get.docker.com/ | sh

Docker may (but shouldn't). You 're not Docker. Just don't.

Who controls the daemon
controls the host

● Why not add users to 'root' group then?!

● 2-liner privilege escalation (source)

docker run ­v $PWD:/stuff ­t my­docker­image /bin/sh ­c \

'cp /bin/sh /stuff && chown root:root /stuff/sh && chmod
a+s /stuff/sh'

● [CVE-2014-3499] systemd socket activation results in privilege
escalation (packaging bug, world rw socket)

● Docker 1.10 introduced Authorization Plugins

– Granular access policies!

The Docker daemon currently requires 'root' privileges. A user added to the
'docker' group gives him full 'root' access rights.

http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
https://github.com/docker/docker/blob/master/docs/extend/plugins_authorization.md

Syscalls! Syscalls! Syscalls!

● Linux kernel has 300+ syscalls
– syscall → potential attack surface

● Enter seccomp!

– Linux kernel security feature. Introduced in Docker
1.10

– Allows a process to specify a Berkeley packet filter
to syscalls

– Default profiles available!

Kernel Capabilities

● Linux divides the privileges traditionally associated with
superuser into distinct units, known as capabilities

● e.g. bind to < 1024 port is net_bind_service cap

● Docker drops most “dangerous” capabilities, e.g.:

– CAP_SYS_RAWIO - Modify kernel memory

– CAP_SYS_MODULE - Insert and remove kernel modules

– Etc.

● Containers can run with –cap­add or –cap­drop options.

Use wisely!

Containers do not (always)
contain

● [CVE-2015-3627] Insecure opening of file-descriptor 1 leading
to privilege escalation

● [CVE-2015-3629] Symlink traversal on container respawn
allows local privilege escalation

● [CVE-2015-3630] Read/write proc paths allow host
modification & information

Namespaces

● LXC abstraction until 0.9, switched to libcontainer (Go)

– Fewer moving parts, consistency
● libcontainer did not support user namespaces until recently

– container root == host root (hint: breakout)

– Before v1.0 → container root was the only option
● Docker 1.10 introduced user namespaces!

– container root != host root

Namespaces are a Linux kernel feature that isolates and virtualizes
resources (PID, hostname, userid, network, ipc, filesystem) of a collection
of processes.

https://blog.docker.com/2016/02/docker-engine-1-10-security/

What about Docker images?

● Trust but verify

● Look out for outdated images in
the hub

● Lots of advancements starting
from 1.8 (Docker Content Trust)

● Nautilus Project

courtesy © BanyanOps

Someone said that 30% of the images on the Docker Registry contain
vulnerabilities (source)

http://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/

So...?

● apt­get remove –purge­with­fire docker?
– NO!

● Containers are here to stay. Why?
– Great for packaging

– Ultra-fast deployments

– Unikernels might be a thing soon.
● Security people don't take change well, hipsters do.

hype

http://unikernel.org/

Docker Hardening

● Lots of options, many insecure by default
● Be smart, use docker-bench-security

… and keep an eye for Actuary (WIP)

https://github.com/docker/docker-bench-security
https://github.com/diogomonica/actuary

Few words on Actuary

● Docker-bench-security successor
● Written in Go (previously bash)
● 50+ security checks
● Supports custom audit profiles (previously not

supported)
● Logging capabilities
● Web service providing official profiles (e.g for

AWS) and profile generation.

SELinux / AppArmor

● Both supported by Docker containers
● Process/resource isolation policies
● SELinux provides more control than AA
● Want to use AppArmor?

– Try bane by @jfrazelle!

● Want to use SELinux?
– It is worth the time but no easy way around.

Good luck!

https://github.com/jfrazelle/bane

Bane

● Human-readable TOML
profiles
$ sudo bane sample.toml

Profile installed
successfully you can now run
the profile with

`docker run ­­security­
opt="apparmor:docker­nginx­
sample"`

Container/Image Visibility

● Every container may run a different version of
the same software

● Lots of OSS tools for analysis
– Banyan

– Clair

– OpenSCAP

https://github.com/banyanops/collector
https://github.com/coreos/clair
http://www.open-scap.org/

Containers/Images in
production

● Use private Docker registries
● Use only official images
● Use TLS/SSL
● Remove unused/old images
● Install only necessary packages
● Enable Content Trust

Final Words

● “- DevOps, meet InfoSec.”
● Container isolation is much thinner than

traditional Vms. Treat it that way.
● Own your prod. images, Docker won't do that

for you!
● Docker security is becoming seriously more

mature (lots of accessible tools too!).
Contribute?

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

